N	\sim	n	`	٠
١v	U	•		٠

Prénom:

Classe: Term

INTERROGATION DE MATHÉMATIQUES Nº7

ENTRAÎNEMENT _ CORRIGÉ

Thème : produit scalaire_ espace

calculatrice autoriseé_ ?min

OBJECTIFS ÉVALUÉS				
	OBJECTIFS EVALUES			
1	Utiliser le produit scalaire pour démontrer une orthogonalité, pour calculer un angle, une longueur dans l'espace			
2	Utiliser la projection orthogonale pour déterminer la distance d'un point à une droite ou à un plan.			
3	Résoudre des problèmes impliquant des grandeurs et mesures : longueur, angle, aire, volume.			
4	Déterminer l'équation cartésienne d'un plan dont on connaît un vecteur normal et un point. Reconnaître un plan donné par une équation cartésienne et préciser un vecteur normal à ce plan			
5	Déterminer les coordonnées du projeté orthogonal d'un point sur un plan donné par une équation cartésienne, ou sur une droite donnée par un point et un vecteur directeur			
6	Étudier des problèmes de configuration dans l'espace : orthogonalité de deux droites, d'une droite et d'un plan ; lieux géométriques simples, par exemple plan médiateur de deux points.			

EXERCICE 1: (OBJECTIF 4:points)

Soit le plan (P) dont un vecteur normal est le vecteur $\vec{n} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ et passant par le point A(5;0;1). Déterminer une équation cartésienne de ce plan (P).

Solution:

Une équation cartésienne de (P) est du type : 1x - 2y + 3z + d = 0.

Puisque A appartient à (P), ses coordonnées vérifient l'équation de (P) :

$$1 \times 5 - 2 \times 0 + 3 \times 1 + d = 0 \Leftrightarrow d = -8$$

On a alors:

$$(P): 1x - 2y + 3z - 8 = 0$$

EXERCICE 2: (OBJECTIFS 2 et 5:points)

1. Déterminer la distance entre I(7; -2; 6) et le plan P d'équation cartésienne -x+y+3z+2=0

Solution:

Un vecteur normal au plan P est : $\vec{n}[-1;1;3]$. La droite orthogonal à P et passant par le point I a x = -t + 7

donc pour équation paramétrique : $\begin{vmatrix} x = -t+7 \\ y = t-2 \\ z = 3t+6 \end{vmatrix}$, t dans |R|

Le projeté orthogonal de I sur le plan correspond à l'intersection entre la droite et le plan. Pour calculer ses coordonnées, on injecte les composantes de la représentation paramétrique de la droite dans l'équation du plan :

$$-(-t+7)+t-2+3(3t+6)+2=0 \Leftrightarrow t-7+t-2+9t+18+2=0 \Leftrightarrow 11t+11=0 \Leftrightarrow k=-1$$

Puis, on remplace t par -1 dans l'équation paramétrique de la droite : $y=-1-2=-3 \\ z=3\times(-1)+6=3$ donne les coordonnées du projeté orthogonal I' du point I sur le plan P:I'(8;-3;3).

La distance entre I et *P* correspond à la distance entre I et son projeté orthogonal I' sur *P* :

$$II' = \sqrt{(8-7)^2 + (-3-(-2))^2 + (3-6)^2} = \sqrt{1+1+9} = \sqrt{11}$$

2. Déterminer la distance entre H(2; 4; 2) et la droite d'équation paramétrique $\begin{cases} x = t+2 \\ y = -3t+4 \end{cases}$, t dans \mathbb{R} z = 2t-5

Solution:

Soit M(x; y; z) le projeté orthogonal de H sur la droite et soit \vec{u} un vecteur directeur de cette droite, on alors :

$$\overrightarrow{HM} \cdot \overrightarrow{u} = 0 \text{ avec } \overrightarrow{HM} \begin{pmatrix} x - 2 \\ y - 4 \\ z - 2 \end{pmatrix} et \overrightarrow{u} \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$$

D'où:
$$1(x-2) - 3(y-4) + 2(z-2) = 0 \Leftrightarrow x - 3y + 2z + 6 = 0$$

Par ailleurs le point M appartient à la droite, ses cordonnées sont donc de la forme (t+2; -3t+4; 2t-5)

On a alors:
$$t + 2 - 3(-3t + 4) + 2(2t - 5) + 6 = 0 \Leftrightarrow 14t - 14 = 0 \Leftrightarrow t = 1$$

Les coordonnées de M sont alors (3; 1; -3).

La distance entre H et la droite correspond à la distance entre H et son projeté orthogonal M sur la droite :

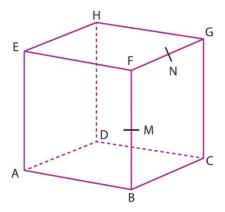
$$HM = \sqrt{(3-2)^2 + (1-4)^2 + (-3-2)^2} = \sqrt{1+9+25} = \sqrt{35}$$

EXERCICE 3: (OBJECTIFS 1 ET 3:points)

Soit le cube ABCDEFGH ci-contre d'arête 1cm, avec M et N milieux respectifs de [FB] et [FG],

Déterminer une mesure en degré de l'angle \widehat{MHN} arrondie au degré.

→ Vous utiliserez le repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.



Solution:

Il s'agit de calculer \overrightarrow{HM} . \overrightarrow{HN} de deux façons différentes, dont une utilisant le cosinus de l'angle cherché.

Méthode avec les coordonnées :

$$H(0;1;1)et\ M\left(1;0;\frac{1}{2}\right)\ donc\ \overrightarrow{HM}\begin{pmatrix}1\\-1\\-\frac{1}{2}\end{pmatrix};\ N\left(1;\frac{1}{2};1\right)\ donc\ \overrightarrow{HN}\begin{pmatrix}1\\-\frac{1}{2}\\0\end{pmatrix}.$$

On a alors : \overrightarrow{HM} . $\overrightarrow{HN} = 1 + \frac{1}{2} + 0 = \frac{3}{2}$.

Méthode avec le cosinus :

 $\overrightarrow{HM} \cdot \overrightarrow{HN} = HM \times HN \times \cos(\overrightarrow{HM}, \overrightarrow{HN})$

Or
$$HM = \sqrt{1 + 1 + \frac{1}{4}} = \sqrt{\frac{9}{4}} = \frac{3}{2}$$
 et $HN = \sqrt{1 + \frac{1}{4}} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2}$

Ainsi :
$$\overrightarrow{HM}$$
. $\overrightarrow{HN} = \frac{3}{2} \times \frac{\sqrt{5}}{2} \times \cos(\overrightarrow{HM}, \overrightarrow{HN}) = \frac{3\sqrt{5}}{4} \times \cos(\overrightarrow{HM}, \overrightarrow{HN})$

On peut alors égaliser les deux produits scalaires :

$$\frac{3}{2} = \frac{3\sqrt{5}}{4} \times \cos(\overrightarrow{HM}, \overrightarrow{HN}) \Leftrightarrow \cos(\overrightarrow{HM}, \overrightarrow{HN}) = \frac{3}{2} \times \frac{4}{3\sqrt{5}} = \frac{2}{\sqrt{5}}$$

$$(\overrightarrow{HM},\overrightarrow{HN}) \approx 27^{\circ}$$

EXERCICE 4: (OBJECTIFS 6:points)

Déterminer l'équation paramétrique de la droite intersection des plans d'équations cartésiennes respectives : -x+2z+1=0 et y-2z+4=0

Solution:

Pour déterminer l'équation de la droite intersection, on a le système suivant :

$$\begin{cases}
-x+2z+1=0 \\
y-2z+4=0 \\
z=k
\end{cases}$$
 en remplaçant z par k dans les 2 premières lignes, on obtient :

La droite intersection des plans d'équations cartésiennes respectives : -x+2z+1=0 et

$$y-2z+4=0$$
 a donc pour équation paramétrique :
$$\begin{cases} x=2k+1 \\ y=2k-4 \end{cases}$$
, k dans \mathbb{R} $z=k$